Abstract: Geospatial big data plays a major role in the era of big data, as most data today are inherently spatial, collected with ubiquitous location-aware sensors such as mobile apps, the global positioning system (GPS), satellites, environmental observations, and social media. Efficiently collecting, managing, storing, and analyzing geospatial data streams provide unprecedented opportunities for business, science, and engineering. However, handling the “Vs” (volume, variety, velocity, veracity, and value) of big data is a challenging task. This is especially true for geospatial big data since the massive datasets must be analyzed in the context of space and time. High performance computing (HPC) provides an essential solution to geospatial big data challenges. This chapter first summarizes four critical aspects for handling geospatial big data with HPC and then briefly reviews existing HPC-related platforms and tools for geospatial big data processing. Lastly, future research directions in using HPC for geospatial big data handling are discussed.
https://link.springer.com/chapter/10.1007%2F978-3-030-47998-5_4